Client Proteins and Small Molecule Inhibitors Display Distinct Binding Preferences for Constitutive and Stress-Induced HSP90 Isoforms and Their Conformationally Restricted Mutants
نویسندگان
چکیده
The two cytosolic/nuclear isoforms of the molecular chaperone HSP90, stress-inducible HSP90α and constitutively expressed HSP90β, fold, assemble and maintain the three-dimensional structure of numerous client proteins. Because many HSP90 clients are important in cancer, several HSP90 inhibitors have been evaluated in the clinic. However, little is known concerning possible unique isoform or conformational preferences of either individual HSP90 clients or inhibitors. In this report, we compare the relative interaction strength of both HSP90α and HSP90β with the transcription factors HSF1 and HIF1α, the kinases ERBB2 and MET, the E3-ubiquitin ligases KEAP1 and RHOBTB2, and the HSP90 inhibitors geldanamycin and ganetespib. We observed unexpected differences in relative client and drug preferences for the two HSP90 isoforms, with HSP90α binding each client protein with greater apparent affinity compared to HSP90β, while HSP90β bound each inhibitor with greater relative interaction strength compared to HSP90α. Stable HSP90 interaction was associated with reduced client activity. Using a defined set of HSP90 conformational mutants, we found that some clients interact strongly with a single, ATP-stabilized HSP90 conformation, only transiently populated during the dynamic HSP90 chaperone cycle, while other clients interact equally with multiple HSP90 conformations. These data suggest different functional requirements among HSP90 clientele that, for some clients, are likely to be ATP-independent. Lastly, the two inhibitors examined, although sharing the same binding site, were differentially able to access distinct HSP90 conformational states.
منابع مشابه
Post-translational modification and conformational state of Heat Shock Protein 90 differentially affect binding of chemically diverse small molecule inhibitors
Heat shock protein 90 (Hsp90) is an essential molecular chaperone in eukaryotes that facilitates the conformational maturation and function of a diverse protein clientele, including aberrant and/or over-expressed proteins that are involved in cancer growth and survival. A role for Hsp90 in supporting the protein homeostasis of cancer cells has buoyed interest in the utility of Hsp90 inhibitors ...
متن کاملGeldanamycin and its derivatives as Hsp90 inhibitors.
The Hsp90 molecule, one of the most abundant heat shock proteins in mammalian cells, maintains homeostasis and prevents stress-induced cellular damage. Hsp90 is expressed under normal conditions at a level of about 1-2 Percent of total proteins, while its expression increases 2-10 fold in cancer cells. The two main constitutively expressed isoforms of Hsp90 are known as Hsp90-alpha and Hsp90-be...
متن کاملSwe1Wee1-dependent tyrosine phosphorylation of Hsp90 regulates distinct facets of chaperone function.
Saccharomyces WEE1 (Swe1), the only "true" tyrosine kinase in budding yeast, is an Hsp90 client protein. Here we show that Swe1(Wee1) phosphorylates a conserved tyrosine residue (Y24 in yeast Hsp90 and Y38 in human Hsp90alpha) in the N domain of Hsp90. Phosphorylation is cell-cycle associated and modulates the ability of Hsp90 to chaperone a selected clientele, including v-Src and several other...
متن کاملDiscovery and validation of small-molecule heat-shock protein 90 inhibitors through multimodality molecular imaging in living subjects.
Up-regulation of the folding machinery of the heat-shock protein 90 (Hsp90) chaperone protein is crucial for cancer progression. The two Hsp90 isoforms (α and β) play different roles in response to chemotherapy. To identify isoform-selective inhibitors of Hsp90(α/β)/cochaperone p23 interactions, we developed a dual-luciferase (Renilla and Firefly) reporter system for high-throughput screening (...
متن کاملHLA-G بررسی ساختار و عملکرد
HLA-G is a nonclassical HLA class Ib, which is located on chromosome 6 (6p.21.3). In contrast to HLA class I molecules, HLA-G has restricted polymorphism. Expression of this molecule in the physiological conditions limits to certain tissues such as thymus, cornea, nail matrix, trophoblast and pancreas. Up to now, 50 alleles of HLA-G molecules have been discovered with 16 distinct functional pro...
متن کامل